新闻动态

对不起!您访问的是旧站留存页,请返回首页进行良好体验!

jiantou   钛合金A-TIG焊接技术的基本原理 2016-5-26
jiantou   对于钛合金加工中切削的注意事项 2016-5-26
jiantou   钛合金压气机盘等温锻造 2016-5-26
jiantou   全世界都在努力开发新的钛冶金技术 2016-5-25
jiantou   物流金融供应链如何服务钛产业 2016-5-25
jiantou   中国的钛产业需重新构建诚信体系 2016-5-25
jiantou   α+β型钛合金的设计研究及性能评价 2016-5-23
jiantou   氢脆在钛及钛合金材料中的危害 2016-5-23
jiantou   喷丸对TC4和半TC4钛板疲劳性能的影响 2016-5-23
产品分类
联系我们

电话: 0917-2776011     手机: 13629178584
传真: 0917-2730078
E-mail: bjlhty@163.com
地址: 陕西省宝鸡市下马营旭光工业园
在线咨询:在线咨询,技术合作

钛合金A-TIG焊接技术的基本原理

来源:钛棒,钛板,钛管,钛丝,钛设备,钛合金,钛材 发布时间:2016-5-26 12:08:26
薄膜的存在限制了电弧的导通截面,从而使电弧收缩;其次,由于焊接前钛合金材料表面覆盖活性焊剂层,在电弧导通过程中,只有电弧热先将活性焊剂和钛金属熔融,并实现液态钛把焊剂薄膜的成功挤走,才能实现电弧的成功导通和稳定燃烧。由于熔融的活性焊剂与液态钛之间有较好的浸润性,因此,焊剂薄膜又不容易被挤走。其被挤走的越少,焊缝也就越窄,电弧的热流量也就越集中,熔透的深度越深;第三,A-TIG焊接时,活性焊剂分子蒸汽进入电弧气氛,增加了弧柱中等离子的导热性,从而使电弧收缩;第四,电弧热使活性焊剂分解电离并进入到电弧外围空间,焊剂离子捕获电弧外围电子形成负离子,降低了弧柱外围空间的电压,从而使电弧收缩。正是由于上述几个方面的协同作用,使A-TIG焊接过程中焊接电弧发生明显收缩,弧柱电流密度增加,致使焊接熔深增加。
 
钛合金A-TIG焊接技及特点
A-TIG焊接技术是焊接前在待焊接工件上表面涂一层活性焊剂,然后沿焊剂层进行TIG焊的工艺方法。与常规TIG焊接工艺相比,钛合金A-TIG焊接电弧的穿透能力显著增强,热输入量、焊接变形及应力减小。在焊接相同规格的产品构件时,在相同的焊接电流条件下,可以实现不开坡口单道焊接或使堆焊层数明显减少,从而提高焊接生产率和产品质量,成倍降低成本。另外,活性焊剂能够大大减少氩弧焊过程中产生的焊缝气孔缺陷,从而直接改善焊接接头及焊接结构的疲劳性能。试验表明,TC4钛合金A-TIG焊对接接头的疲劳极限比常规TIG焊提高16%,可达到母材的90%。目前钛合金活性焊剂氩弧焊技术已经发展成为一种为保证武器装备提高质量、提高加工效率和降低成本的新型先进连接制造技术。
 
目前针对TC4钛合金,多采用氩弧焊或等离子弧焊进行焊接加工,但该两种方法均需填充焊接材料,由于保护气氛、纯度及效果的限制,带来接头含氧量增加,强度下降,且焊后变形较大。采用电子束焊接和激光束焊接,研究了TC4钛合金的焊接工艺性,实现该种材料的精密焊接。
 
试验材料为TC4(Ti-6Al-4V);试验设备:SW1002/7.5-150型真空电子束焊机、RS2000型轴流CO2激光加工机。在试验实施时,焊接阶梯试环,粗找工艺参数,初步确定焊接工艺规范;焊接平板对接试样,利用X射线探伤仪检测焊缝内部质量,并进行金相组织分析;焊接对接试环,用三坐标精密测试仪测量焊件轴向与径向焊接变形。
(1) 焊缝气孔倾向。焊缝中的气孔是焊接钛合金最普遍的缺陷,存在于被焊金属电弧区中的氢和氧是产生气孔的主要原因。TC4钛棒电子束焊接,其焊缝中气孔缺陷很少。为此,着重就激光焊接焊缝中形成气孔的工艺因素进行研究。
由试验结果可以看出,激光焊接时焊缝中的气孔与焊缝线能量有较密切关系,若焊接线能量适中,焊缝内只有极少量气孔、甚至无气孔,线能量过大或过小均会导致焊缝中出现严重的气孔缺陷。此外,焊缝中是否有气孔缺陷还与焊件壁厚有一定关系,比较试样试验结果可看出,随着焊接壁厚的增加,焊缝中出现气孔的概率增加。
(2) 焊缝内部质量。利用平板对接试样,采用电子束焊接和激光焊接来考察焊缝内部质量,经理化检测,焊缝内部质量经X射线探伤,达GB3233-87 II级要求,焊缝表面和内部均无裂纹出现,焊缝外观成型良好,色泽正常。
(3) 焊深及其波动情况。钛合金作为工程构件使用,对焊深有一定要求,否则不能满足构件强度要求;而且要实现精密焊接,必须对焊深波动加以控制。为此,采用电子束焊接和激光焊接方法分别焊接了两对对接试环,焊后对试环进行了纵向及横向解剖,来考察焊深及焊深波动情况,结果表明,电子束焊接焊缝平均焊深可达2.70mm以上,焊深波动幅度为-5.2~+6.0%,不超过±10%;激光焊接焊缝平均焊深约为2.70mm,焊深波动幅度为- 3.8~+5.9%,不超过±10%。
(4) 接头变形分析。利用对接试环来考察接头焊接变形,检测了对接试环的径向及轴向变形,结果表明,电子束焊接和激光焊接的变形都很小。电子束焊接的径向收缩变形量为f 0.05~f 0.09mm,轴向收缩量为0.06~0.14mm;激光焊接的径向收缩变形量为f 0.03~f 0.10mm,轴向收缩变形量为0.02~0.03mm。
(5) 焊缝组织分析。经理化检测,焊缝组织为a+b,组织形态为柱状晶+等轴晶,有少量的板条马氏体出现,晶粒度与基体接近,热影响区较窄,组织形态和特征较为理想。
 
国外技术发展现状
活性焊剂最先是由乌克兰巴顿焊接研究所于60年代研制出来的。其最初的研制目的是为了通过在焊缝区添加卤化物以改善钛合金TIG焊时焊缝中的气孔问题。试验结果表明,添加的卤化物在抑制钛合金焊缝气孔的同时,还影响了焊缝的成形:在其他条件等同的情况下,焊缝熔深(h)增加,熔宽(b)减小,焊缝形状系数(ψ=b/h)也相应减小。此外,焊接时热输入(q/V)也相应降低。鉴于添加卤化物所带来的一系列积极效果,巴顿所于1964年开发了第一种多元活性焊剂产品——AHT-9A,用于钛合金焊接。目前,其A-TIG焊工艺已通过试验确认,并用于俄罗斯航空、航天、化工、压力容器、电力设备、核电设施等领域。美国在氩弧焊用活性焊剂的研究方面比乌克兰相对落后。但目前美国已利用开发出的不锈钢与碳钢氩弧焊用活性焊剂进行双体船壳体、油轮、核反应容器、压力容器等的建造;海军方面正使用该焊剂焊接舰船及潜艇用管道系统和某些零部件。