在某工程项目上,设备的主体材质为
钛材,牌号为TA2,考虑到产品的厚度和评定覆盖范围,在产品焊接前, 我们选用30mm厚的钛板,采用手工钨极氩弧焊进行焊接工艺评定试验。坡口选择:由于
钛板厚度为30mm,考虑到尽量减少焊材的填充量,我们采用如附图所示的双面U型坡口。
1.焊接工艺要点
a.焊接环境:钛材的焊接应在清洁的环境中进行,严禁在含有铁、磨料粉末、灰尘的空气中施焊。焊接时应避开通风口和敞开的门窗,防止外界气流对保护气的影响。
b.坡口加工和清理:坡口宜采用机械加工,并去除毛刺,坡口附近20mm 范围应使用不锈钢丝刷清理干净,机械清理后应立即用丙酮清洗上述表面并擦拭干净。
c.氩气保护:对熔池及处于400℃ 以上的区域(包括焊缝背面)进行良好的氩气保护。需要采用大喷嘴焊枪, 一般喷嘴直径为Φ16mm左右,喷嘴内应设置气体透镜以确保保护效果。另外需根据实际焊接结构,设计制作气体保护装置,除了喷嘴氩气保护外,还应设置拖罩保护以保护凝固的高温焊缝,制作反面保护罩以保护焊缝背面,在焊接时,背面保护装置应随着正面焊接同时移动。
2.焊接规范
焊材的选择一般是要求焊材的成分与被焊钛材相匹配,但为了改善接头性能,有时也可选用屈服强度低于母材的焊接材料。在[宝鸡力航钛业]www.lh-ti.com(AWS A5.16)中规定有工业纯钛焊丝的成分与性能,国标中规定的
钛丝成分与性能同AWS一致。在确保严格清理干净待焊区域及保护气良好的情况下,采用如表3规范进行焊接,焊材选用与母材等成分的TA2(AWS 为ERTi-2)焊丝,层间温度控制≤100℃,层间清理干净焊缝表面。焊缝保护效果判断:银白色为保护最好;浅黄色为轻微氧化;蓝色表示氧化严重;灰色则为极差,按不合格处理。
3.理化性能试验
试板焊接完成后,表面成形良好, 焊缝表面为银白色,之后进行100% RT 检验合格,然后进行了理化试验,结果如表4所示。焊接工艺评定试板经焊后100%无损检测合格,抗拉强度、冷弯试验、冲击试验和化学成分均满足产品技术条件的要求。钛材焊接时,焊接环境的清洁、焊前对焊丝和工件的清理、焊接时保护气体的纯度和400℃以上高温区域的有效保护是影响焊接质量的重要因素。从焊接工艺评定的结果可以看出,焊接接头性能满足技术要求,证明焊接评定试验所采用的焊接工艺参数合理、可靠,可以用于产品焊缝的焊接。
纯钛的焊接性分析:
1.气体等杂质污染引起的接头脆化。
常温下钛材是很稳定的,但随着温度升高,钛焊缝吸收氢、氧、氮的能力随之也明显上升。试验研究表明, 钛材一般从250℃开始就吸收氢、氧、氮,在焊接时,温度越高,保温时间越长,焊缝塑性则越差,所以在焊接钛材时,如采用氩弧焊接,普通的焊枪是不能满足要求的,因为它不能使焊缝得到有效的保护,普通焊枪形成的保护气只能保护焊接熔池,对于处于已凝固的高温区的焊缝及热影响区, 不能提供保护,就会造成高温焊缝及热影响区吸收氢、氧、氮等气体。氮、氧和氢的侵入均能在焊缝形成间隙固溶体,使焊缝的强度提高,降低焊缝的塑性及韧性,而氢还会显著降低焊缝的冲击韧性进而使焊接接头脆化。因此,焊接时要对于400℃以上的高温区给予充分的保护,包括焊缝背面。
2.焊接接头裂纹
当焊缝氢、氧、氮、碳的含量较高时,焊缝及热影响区会变脆,在较大焊接应力作用下会出现裂纹,这些裂纹一般是在较低温度下形成的,产生原因主要与焊接区气体的保护及待焊工件表面的清理有关。对于钨极氩弧焊而言,良好的气体保护,彻底地清理干净待焊区域,即可避免裂纹的产生。
3.焊接气孔
钛材焊接时的气孔形成原因主要是在保护气及母材焊丝中含有的氢、氧、氮、水等杂质,工件表面或焊丝上的油脂、氧化物等污染未能清理干净。所以消除气孔形成的方法就是要使用较高纯度的氩气进行保护,一般纯度要达到99.99%,并对焊接时400℃ 以上的区域进行充分的保护,同时焊接前仔细清理焊丝、坡口、工件上的油脂等氧化物。
气体杂质对焊缝金属性能的影响 钛具有很高的化学活泼性,与空气中的氧、氮有极高的亲和力。据[宝鸡力航钛业]www.lh-ti.com介绍在较低的温度下,钛与氧相互作用生成一层致密的氧化膜,随着温度的提高,氧化膜的厚度随之增厚,超过600℃钛开始吸氧并使氧溶解到钛中。温度再高,钛的活性就会急剧增加并与氧发生激烈反应而生钛氧化物。钛300℃以上开始吸氢,在700℃以上开始吸氮。氧和氮对钛污染的结果是使钛强度和硬度增高而塑性降低。氮比氧的影响程度更大,氢在钛中含量从0.01%~0.05%会使焊缝金属的冲击韧性急剧下降,而塑性却下降较少。这是氢化物引起的脆性,即所常说的“氢脆”。氢也是引发焊缝产生气孔的根源。
影响钛材焊接质量的因素:1.气体杂质对焊缝金属性能的影响;2.其他杂质对焊缝金属性能的影响;3.焊接金属和接头热影响区的组织变化4.气孔是钛焊缝中常见和较难避免的缺陷。钛及钛合金作为结构材料有许多优点,如比重小、抗拉强度和屈服强度高,在300~500℃下仍具有足够高的强度,在海水及大多数酸碱盐的介质中均具有优良的抗腐蚀性能,在航空、化工、核工业上日益获得广泛的应用。
钛材具有优良的耐腐蚀性能,可用于其它金属材料难以胜任的高氯离子浓度介质下工作的设备,选材上一般采用加工性能及力学性能优良的工业纯钛。工业纯钛中的杂质能提高材料的强度,但会使塑性显著降低,以上3种等级的工业钛材随杂质的增多强度依次增加,塑性同时依次下降。与钛合金相比,纯钛的强度较低,但塑性及韧性较好,特别是低温冲击韧性优良, 缺点是温度升高时强度显著下降,故只能在350℃以下温度使用,与普通容器用钢相比,钛材屈强比较高,塑性韧性相对较差。